Encryption 101 WAVV 2008

Tony Thigpen - TEI Jeff Barnard – BSI

Who we are

- Tony Thigpen
 - Thigpen Enterprises, Inc
 - Dino-Protect since 2004
- Jeff Barnard
 - Barnard Software, Inc.
 - Data-Crypt since 2005

Beginnings

• Plutarch noted that Spartan generals wrote their messages on a narrow strip of parchment wrapped around a thin cylinder ("scytale"). When the parchment was unwound, the message appeared as a nonsense sequence of letters and could only be read by wrapping the parchment around another cylinder of the same size.

Beginnings

• In the fifth century BC, a Greek serving in the Persian court sent a message back to Greece calling for an assassination. The message was delivered, tattooed onto the scalp of a trusted slave who had grown his hair back.

Beginnings

- The Greeks also provide the first recorded use of ciphers using numerical substitutions by writing the alphabet into a grid and then using the grid co-ordinates to substitute for each letter in a message.
- Julius Caesar used a simple substitution cipher, using the normal alphabet, but swapping one letter for another.

Modern Methods

- Since WWII, mechanical methods have become more common and are now more prevalent than manual systems.
 - German Enigma machine
- Computer based encryption
 - DES
 - AES
 - Many many others

Keys

- Symmetric vs. Asymmetric
 - Symmetric one key
 - Asymmetric two keys
 - Asymmetric "one way" one key
 - Used for passwords
 - Hash Algorithms
- Length
 - Anything less than 128bits is not secure

Symmetric

- Works well for "in-corporate" data
- Used by many of today's encryption
 - -RC4
 - AES

Asymmetric

- Best choice for "extra-corporate" data transfer
- Public" vs. "Private" keys
 - Data is encrypted using the Public key
 - Data is decrypted using the Private key
- Generation of keys is CPU intensive
- Used by SSL

Key Management

• Key management is usually a larger problem than the encryption itself

Ciphers

Character

- Each character is individually encrypted
- Can generate recurring characters

• Block

- A set length block of characters is encrypted as a set
- Can generate repeating groups of characters

Stream

Adjusts the encryption based on previous data

Ciphers

- Modes of operation
 - Used to convert a block cipher into a stream cipher
 - Cipher-block chaining (CBC)
 - Cipher feedback (CFB)
 - Output feedback (OFB)

Ciphers

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

The Internet

- The World Wide Web
- The Internet Threat Model
 - They are out to get you
- The Players
- Goals of Security
 - Confidentially
 - Message Integrity
 - Endpoint Authentication

SSL/TLS

- SSL = Secure Sockets Layer
 - Eric Young
- TLS = Transport Layer Security
 - TLS is SSLv3
- TCP level encryption
- When a connection is made
 - Keys are exchanged
 - Master Key created
- All data encrypted using the Master Key

Key Management

- Public Key Cryptography (PKC)
- Digital Signature
 - Used to 'sign' a message
 - Trusted Third Party
 - Certificate Authority (CA) X.509
 - Issuer name (e.g., Secure Server)
 - Subject name (e.g., Amazon.com)
 - Subject Public Key
 - Digital Signature
 - Expiration date, etc.

OPENSSL

- www.openssl.org
- Standard implementation
- Base for most other implementations
- Authored by Eric Young
- Available for virtually all platforms
- Open source

Hardware Support

- CP Assist for Cryptographic Function (CPACF)
 - Encryption instructions
 - New algorithms added as new machines developed
 - DES
 - AES
 - more
 - No charge

Hardware Support

- Encryption co-processors
 - Crypto Express2
 - Additional cost feature
- Other encryption support
 - Tape drives
 - Monday 9:15 "z/VSE Security Part 2"
 - Tuesday 9:15 "z/VM Tape hardware Encryption"

Software Encryption

- Software implementations are slower than dedicated hardware
- BSI, CSI, and TEI all support 'smart' encryption routines that will use hardware encryption when available yet switch to software based routines if the hardware is not present