
Socket, Socket,
Who has the Socket

WAVV 2004

Tony Thigpen
Tony@VSE2PDF.COM

What is EZA?

• EZA is the IBM product prefix for TCP/IP
on MVS

• MVS has three major programming
interfaces to TCP/IP
– BSD/C Sockets
– EZASMI (Assembler Macro)
– EZASOKET (HLL API)
– REXX

MVS EZA BSD/C Sockets

• Based on “Berkeley” standards
– Open Group Technical Standards for

Networking Services
– http://www.opengroup.org/onlinepubs/009619199/

• Example:
– int recv(int, char *, int, int);
– result = recv(socket,&buffer,length,flags);

EZASMI

• Assembler Macro Interface
– OS/390 SecureWay Communications Server

IP Application Programming Interface Guide
Version 2 Release 8
Document Number SC31-8516-03

• Example:
– EZASMI Type=Recv,S=socket,

Buf=,Nbyte=,Flags=,Errorno=,Retcode

EZASOKET

• High Level Language API
– (Same document as EZASMI)

• Example:
– CALL 'EZASOKET' USING

SOC-FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE

REXX

• REXX API
– (Same document as EZASMI)

• Example:
– Socket(‘RECV’,s,maxlength,flags)

EZA and VSE

• BSD/C
– Implemented by LE/VSE C Runtime

• REXX
– Implemented by REXX/VSE

• EZASMI and EZASOKET
– Implemented on VSE 2.5 by IBM
– Implemented on VSE 2.1 and higher by BSI

for use on their TCP/IP stack

Relationships

• BSD/C calls are the basic building block
• Other interfaces just enable other languages

to communicate to the BSD/C calls.
• REXX, EZASMI, and EZASOKET all have

calls that are subsets of the available BSD/C
calls.

Why Use the EZA Interface?

• Portability
– HLL (call ‘EZASOKET’)
– ASM (EZASMI macro)
– REXX (s=SOCKET(‘Open’,…)

• Non-portability
– HLL (EXEC TCP …)
– ASM (SOCKET macro
– REXX (s=SOCKET(‘TCP’,‘OPEN’)

Why Use the EZA Interface?

• For simple open/send/receive/close
functions, the CSI Interface is easier to
code, but it does require a pre-translate step
for the API.

• And the CSI API is TCP/IP Version
specific.
– Going to TCP/IP 1.4 required relinking of all

phases using the API.

Why Use the EZA Interface?

• Each CSI open or close performs many
TCP/IP functions.
– For programs that perform multiple opens, this

overhead can not be eliminated.
• Each EZA call performs only the function

being used.
– For programs performing multiple opens, the

overhead is greatly reduced.

Why Use the EZA Interface?

• Some capabilities of TCP/IP can not be
used when using the CSI Interface
– Simultaneous Reads and Writes
– Giving and Taking of open communication

links (can be done, but not documented)
– “Look Ahead” or “PEEK” processing
– IBM could not program NJE over TCP/IP

without first implementing EZASMI in VSE

Support Routines

• EZACIC04 EBCDIC-to-ASCII
• EZACIC05 ASCII-to-EBCDIC
• EZACIC06 SELECT bit stream setup
• EZACIC08 HOST field processor

Types of Programs

• Client
– Connects to a Server

• Iterative Server
– All processing is self-contained

• Concurrent Server
– A Listener that spawns a Child when connected

• Child
– A “partial” server to handle sends/receives

Concurrent Server and Child

• Why?
– Iterative Server has deficiencies

• 1 to 1 only
• processing is tied up while handling the sends and

receives
• Additional Clients can not get a connection

EZA Client Program Flow

• INITAPI (EZASMI only)
• SOCKET
• CONNECT
• SEND/RECV loop
• SHUTDOWN
• CLOSE
• TERMAPI (EZASMI only)

EZA Client Program Flow

• INITAPI (EZASMI only)
– Loads interface programs into GETVIS
– Allocates storage
– Initializes default control information
– Verifies that the TCP/IP stack is available
– The EZASOKET interface performs this

function behind the scenes

EZA Client Program Flow

• SOCKET
– Assigns a socket number (Binary half-word)
– Allocates socket specific storage
– Informs caller of socket number

• CONNECT
– Establishes a communications session with the

requested server

EZA Client Program Flow

• WRITE, SEND, or SENDTO
– Transmits data

• READ, RECV, or RECVFROM
– Receives Data

EZA Client Program Flow

• SHUTDOWN
– Informs stack to close down communications once all

buffers are transmitted
• CLOSE

– Releases socket specific storage acquired by the
SOCKET call

• TERMAPI (EZASMI only)
– Releases all storage acquired by the INITAPI call
– The EZASOKET interface performs this function

behind the scenes

EZA Iterative Server Flow
• INITAPI (EZASMI only)
• SOCKET
• BIND
• LISTEN
• ACCEPT loop

– SEND/RECV loop
– SHUTDOWN
– CLOSE

• SHUTDOWN
• CLOSE
• TERMAPI (EZASMI only)

EZA Iterative Server Flow

• INITAPI
– Same as Client Program

• SOCKET
– Same as Client Program

• BIND
– Informs interface as to what local port to use

• LISTEN
– Informs the stack that the program wants any data

destined for the local port specified by the BIND

EZA Iterative Server Flow

• ACCEPT Loop
– Informs the stack that the program is ready to

receive data
– When data is received, a new socket area is

allocated and the program is informed of this
new socket number on which the
communication is to occur.

– The original socket number is NOT used. It
remains available for more ACCEPT calls

EZA Iterative Server Flow

• SEND/RECV
– Transfers data (on the NEW socket)

• SHUTDOWN
– Informs stack to close down communications once all

buffers are transmitted (on the NEW socket)

• CLOSE
– Releases socket specific storage acquired by the

ACCEPT call for the new socket

EZA Iterative Server Flow

• ACCEPT Loop
– Accepts continue to be performed against the original

socket. Anytime data is available, SEND/RECV loops
are performed

• SHUTDOWN
– Informs the stack that the program no longer wishes to

receive data on a specific port
• CLOSE

– Releases socket specific storage acquired by the
original SOCKET call

EZA Iterative Server Flow

• TERMAPI (EZASMI only)
– Releases all storage acquired by the INITAPI

call

EZA Concurrent Server
• The original server continues to perform

ACCEPT calls, but instead of handling any
SEND/RECV calls, it transfers the socket to
another program.

• This allows the original program to quickly
handle many requests without being slowed
by data transfers

EZA Concurrent Server

• Used to service multiple clients
simultaneously

• Depends on multiple tasks
– Main Server
– Client Subtasks

• Connections are passed using
– GIVESOCKET
– TAKESOCKET

Child Process
under CICS

GIVE/TAKE Restrictions

• Both processes must be using the same
stack

• There is no capability to transfer between
IBM and BSI applications.

Control Functions

• GETHOSTNAME
• GETPEERNAME
• GETSOCKNAME
• GETSOCKOPT
• IOCTL

• FCNTL
• GETHOSTBYADDR
• GETHOSTBYNAME
• GETCLIENTID
• GETHOSTID

SELECT Processing

• Allows a program to wait for multiple actions to
occur

• SELECT
– Wait for new ACCEPT at the same time as waiting for

a GIVESOCKET to complete
– Waiting for multiple ports
– Waiting for timers
– Wait for a port or a timer at the same time

• SELECTEX
– Will also wait for an external ECB

Debugging

• IBM
– Operator command

• EZAAPI TRACE=ON[,PART=xx][,SYSLST]
– Help available

• EZAAPI ?

• BSI
– // SETPARM IPTRACE=‘YYY’
– Output is in LST queue under the partition id

• EZALOGxx
– EZALOGF2 (example)

Other Helpful Manuals

• IBM TCP/IP for MVS: Application Programming
Interface Reference
– Version 3 Release 2
– SC31-7187-03

• I like this one better than the latter manual mentioned on slide
5

• TCP/IP for VSE/ESA: IBM Program Setup and
Supplementary Information
– As of VSE 2.5
– SC33-6601-05

Other Helpful Manuals

• Redbook: A Beginner's Guide to MVS
TCP/IP Socket Programming
– GG24-2561-00
– Although written for MVS and a little dated, it

is a very good book to learn the basics.
– Watch out for the SYNC call used after a

SELECT
• No longer needed or supported in MVS or VSE

Information
• Download this presentation, compatibility

spreadsheet, and all the sample programs:
http://www.vse2pdf.com/coolstuff

• IBM 2000 VM/VSE Technical Conference
presentation
– TCP/IP for VSE/ESA Socket Programming

(Ingo Adlung)
• http://www-1.ibm.com/servers/eserver

/zseries/os/vse/pdf/orlando2000/E06.pdf

Downloads now available

• Batch
– Server
– Client
– Child

• CICS
– Listener (Server)
– Client
– Child
– Starter/stopper

	Socket, Socket, Who has the SocketWAVV 2004
	What is EZA?
	MVS EZA BSD/C Sockets
	EZASMI
	EZASOKET
	REXX
	EZA and VSE
	Relationships
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Support Routines
	Types of Programs
	Concurrent Server and Child
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Concurrent Server
	EZA Concurrent Server
	Child Process under CICS
	GIVE/TAKE Restrictions
	Control Functions
	SELECT Processing
	Debugging
	Other Helpful Manuals
	Other Helpful Manuals
	Information
	Downloads now available

