
Socket, Socket, 
Who has the Socket

WAVV 2004

Tony Thigpen
Tony@VSE2PDF.COM



What is EZA?

• EZA is the IBM product prefix for TCP/IP 
on MVS

• MVS has three major programming 
interfaces to TCP/IP
– BSD/C Sockets
– EZASMI (Assembler Macro)
– EZASOKET (HLL API)
– REXX



MVS EZA BSD/C Sockets

• Based on “Berkeley” standards
– Open Group Technical Standards for 

Networking Services
– http://www.opengroup.org/onlinepubs/009619199/

• Example:
– int recv(int, char *, int, int);
– result = recv(socket,&buffer,length,flags);



EZASMI

• Assembler Macro Interface
– OS/390 SecureWay Communications Server

IP Application Programming Interface Guide 
Version 2 Release 8
Document Number SC31-8516-03

• Example:
– EZASMI Type=Recv,S=socket,

Buf=,Nbyte=,Flags=,Errorno=,Retcode



EZASOKET

• High Level Language API
– (Same document as EZASMI)

• Example:
– CALL 'EZASOKET' USING

SOC-FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE 



REXX

• REXX API
– (Same document as EZASMI)

• Example:
– Socket(‘RECV’,s,maxlength,flags)



EZA and VSE

• BSD/C
– Implemented by LE/VSE C Runtime

• REXX
– Implemented by REXX/VSE

• EZASMI and EZASOKET
– Implemented on VSE 2.5 by IBM
– Implemented on VSE 2.1 and higher by BSI

for use on their TCP/IP stack



Relationships

• BSD/C calls are the basic building block
• Other interfaces just enable other languages 

to communicate to the BSD/C calls.
• REXX, EZASMI, and EZASOKET all have 

calls that are subsets of the available BSD/C 
calls. 



Why Use the EZA Interface?

• Portability
– HLL (call ‘EZASOKET’)
– ASM (EZASMI macro)
– REXX (s=SOCKET(‘Open’,…)

• Non-portability
– HLL (EXEC TCP …)
– ASM (SOCKET macro
– REXX (s=SOCKET(‘TCP’,‘OPEN’)



Why Use the EZA Interface?

• For simple open/send/receive/close 
functions, the CSI Interface is easier to 
code, but it does require a pre-translate step 
for the API.

• And the CSI API is TCP/IP Version 
specific.
– Going to TCP/IP 1.4 required relinking of all 

phases using the API.



Why Use the EZA Interface?

• Each CSI open or close performs many 
TCP/IP functions.
– For programs that perform multiple opens, this 

overhead can not be eliminated.
• Each EZA call performs only the function 

being used.
– For programs performing multiple opens, the 

overhead is greatly reduced.



Why Use the EZA Interface?

• Some capabilities of TCP/IP can not be 
used when using the CSI Interface
– Simultaneous Reads and Writes
– Giving and Taking of open communication 

links (can be done, but not documented)
– “Look Ahead” or “PEEK” processing
– IBM could not program NJE over TCP/IP 

without first implementing EZASMI in VSE



Support Routines

• EZACIC04 EBCDIC-to-ASCII
• EZACIC05 ASCII-to-EBCDIC
• EZACIC06 SELECT bit stream setup
• EZACIC08 HOST field processor



Types of Programs

• Client
– Connects to a Server

• Iterative Server
– All processing is self-contained

• Concurrent Server
– A Listener that spawns a Child when connected

• Child
– A “partial” server to handle sends/receives



Concurrent Server and Child

• Why?
– Iterative Server has deficiencies

• 1 to 1 only
• processing is tied up while handling the sends and 

receives
• Additional Clients can not get a connection



EZA Client Program Flow

• INITAPI (EZASMI only)
• SOCKET
• CONNECT
• SEND/RECV loop
• SHUTDOWN
• CLOSE
• TERMAPI (EZASMI only)



EZA Client Program Flow

• INITAPI (EZASMI only)
– Loads interface programs into GETVIS
– Allocates storage
– Initializes default control information
– Verifies that the TCP/IP stack is available
– The EZASOKET interface performs this 

function behind the scenes



EZA Client Program Flow

• SOCKET
– Assigns a socket number (Binary half-word)
– Allocates socket specific storage
– Informs caller of socket number

• CONNECT
– Establishes a communications  session with the 

requested server



EZA Client Program Flow

• WRITE, SEND, or SENDTO
– Transmits data

• READ, RECV, or RECVFROM
– Receives Data



EZA Client Program Flow

• SHUTDOWN
– Informs stack to close down communications once all 

buffers are transmitted
• CLOSE

– Releases socket specific storage acquired by the 
SOCKET call

• TERMAPI (EZASMI only)
– Releases all storage acquired by the INITAPI call
– The EZASOKET interface performs this function 

behind the scenes



EZA Iterative Server Flow
• INITAPI (EZASMI only)
• SOCKET
• BIND
• LISTEN
• ACCEPT loop

– SEND/RECV loop
– SHUTDOWN
– CLOSE

• SHUTDOWN
• CLOSE
• TERMAPI (EZASMI only)



EZA Iterative Server Flow

• INITAPI
– Same as Client Program

• SOCKET
– Same as Client Program

• BIND
– Informs interface as to what local port to use

• LISTEN
– Informs the stack that the program wants any data 

destined for the local port specified by the BIND



EZA Iterative Server Flow

• ACCEPT Loop
– Informs the stack that the program is ready to 

receive data
– When data is received, a new socket area is 

allocated and the program is informed of this 
new socket number on which the 
communication is to occur.

– The original socket number is NOT used. It 
remains available for more ACCEPT calls



EZA Iterative Server Flow

• SEND/RECV
– Transfers data (on the NEW socket)

• SHUTDOWN
– Informs stack to close down communications once all 

buffers are transmitted (on the NEW socket)

• CLOSE
– Releases socket specific storage acquired by the 

ACCEPT call for the new socket



EZA Iterative Server Flow

• ACCEPT Loop
– Accepts continue to be performed against the original 

socket. Anytime data is available, SEND/RECV loops 
are performed

• SHUTDOWN
– Informs the stack that the program no longer wishes to 

receive data on a specific port
• CLOSE

– Releases socket specific storage acquired by the 
original SOCKET call



EZA Iterative Server Flow

• TERMAPI (EZASMI only)
– Releases all storage acquired by the INITAPI 

call



EZA Concurrent Server
• The original server continues to perform 

ACCEPT calls, but instead of handling any 
SEND/RECV calls, it transfers the socket to 
another program.

• This allows the original program to quickly 
handle many requests without being slowed 
by data transfers



EZA Concurrent Server

• Used to service multiple clients 
simultaneously

• Depends on multiple tasks 
– Main Server
– Client Subtasks

• Connections are passed using
– GIVESOCKET
– TAKESOCKET





Child Process
under CICS





GIVE/TAKE Restrictions

• Both processes must be using the same 
stack 

• There is no capability to transfer between 
IBM and BSI applications.



Control Functions

• GETHOSTNAME
• GETPEERNAME
• GETSOCKNAME
• GETSOCKOPT
• IOCTL

• FCNTL
• GETHOSTBYADDR
• GETHOSTBYNAME
• GETCLIENTID
• GETHOSTID



SELECT Processing

• Allows a program to wait for multiple actions to 
occur

• SELECT
– Wait for new ACCEPT at the same time as waiting for 

a GIVESOCKET to complete
– Waiting for multiple ports
– Waiting for timers
– Wait for a port or a timer at the same time

• SELECTEX
– Will also wait for an external ECB



Debugging

• IBM
– Operator command

• EZAAPI TRACE=ON[,PART=xx][,SYSLST]
– Help available

• EZAAPI ?

• BSI
– // SETPARM IPTRACE=‘YYY’
– Output is in LST queue under the partition id

• EZALOGxx
– EZALOGF2 (example)



Other Helpful Manuals

• IBM TCP/IP for MVS: Application Programming 
Interface Reference
– Version 3 Release 2
– SC31-7187-03

• I like this one better than the latter manual mentioned on slide
5

• TCP/IP for VSE/ESA: IBM Program Setup and 
Supplementary Information
– As of VSE 2.5
– SC33-6601-05



Other Helpful Manuals

• Redbook: A Beginner's Guide to MVS 
TCP/IP Socket Programming
– GG24-2561-00
– Although written for MVS and a little dated, it 

is a very good book to learn the basics.
– Watch out for the SYNC call used after a 

SELECT
• No longer needed or supported in MVS or VSE



Information
• Download this presentation, compatibility 

spreadsheet, and all the sample programs:
http://www.vse2pdf.com/coolstuff

• IBM 2000 VM/VSE Technical Conference 
presentation
– TCP/IP for VSE/ESA Socket Programming 

(Ingo Adlung)
• http://www-1.ibm.com/servers/eserver

/zseries/os/vse/pdf/orlando2000/E06.pdf



Downloads now available

• Batch
– Server
– Client
– Child

• CICS
– Listener (Server)
– Client
– Child
– Starter/stopper 
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